
Jonathan Bell, Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences 
© 2022 released under CC BY-SA

CS 4530 Software Engineering
Module 17: Open Source Principles

http://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
By the end of this lesson, you should be able to…

• Understand the terminology “free software” and explain open source
culture and principles.

• Express an educated opinion on the philosophical/political debate
between open source and proprietary principles.

• Reason about the tradeoffs of different open source licenses and
business model

In the beginning, there was Open Source

• Hardware was not yet standardized,
computer vendors focused on
hardware innovation, building new
operating systems for each platform

• Much software development focused
in academic labs, and AT&T’s Bell
Research Labs

• Unix created at Bell Labs using the
new, portable language “C”, licenses
initially released with source code

IBM 704 at NASA Langley in 1957 (Public domain)

The Case Against Open Source

• “Open-Source Doomsday”: Once all software is free,
we’ll stop making more software and have a market
collapse

• Innovation will be stifled by the risk that software will
be copied

• Making source code public means easier to attack

• “Anarchistic” licensing prevents companies from
profiting from open source software

[Variation of popular meme, original source unknown]

The Case For Open Source

• Many eyes make all bugs shallow

• End-users can improve and customize software to their
needs

• New features can be proposed and developed
organically

• Greater productivity when more code is reused (easier
with open source)

[Screenshot, 2022, opensource.microsoft.com]

http://opensource.microsoft.com

UNIX, BSD and GNU

• 1978: UC Berkeley begins distributing their own derived
version of Unix (BSD)

• 1983: AT&T broken up by DOJ, UNIX licensing changed:
no more source releases

• Also 1983: “Starting this Thanksgiving I am going to
write a complete Unix-compatible software system
called GNU (Gnu’s Not Unix), and give it away free to
everyone who can use it”

BSD Copyright in OS X boot sequence

GNU logo (a gnu wildebeest)

Free Software as a Philosophy
“Free as in Speech, not as in beer”

• Although UNIX was distributed to licensees with source code, the
license was still restrictive

• Richard Stallman’s Free Software Foundation - free as in liberties

• Freedom 0: The freedom to run the program as you wish, for any
purpose

• Freedom 1: The freedom to study how the program works, and
change it so it does your computing as you wish

• Freedom 2: The freedom to redistributed copies (of the original)
so you can help others

• Freedom 3: The freedom to distribute copies of your modified
version to others

Richard M Stallman (Licensed under GFDL)

Free Software as a Philosophy
“Free as in Speech, not as in beer”

• Free Software Foundation: Free software should be licensed under the GNU
Public License (GPL), considering questions like:

• Are you required to redistribute any modifications (under same license) -
“copyleft”

• Can you redistribute executable binaries, or only source?

• Are you allowed to use the software in a restrictive hardware environment?
(“Tivioization”)

• Popular alternative: “Do whatever you want with this software, but don’t blame
me if it doesn’t work” (“freeware”)

GNU/Linux (1991-Today)

• Stallman set out to build an operating system in 1983, ended up
building a tremendous set of utilities that are needed by an OS
(compiler, utilities, etc)

• Linux is an operating system built around and with the GNU
utilities, licensed under GPL

• Rise of the internet, demand for internet servers drives demand
for cheap/free OS

• Companies began adopting and supporting Linux for enterprise
customers - IBM committed over $1B; Red Hat and others

The Cathedral and the Bazaar (1997)

• Eric S Raymond’s 1997 essay compares
software development methodologies as a
“cathedral” or “bazaar”

• Much OSS today follows this “bazaar”
model:

• Users treated as co-developers

• Release software early for feedback

• Modularize + reuse components

• Democratic organization

Netscape: “Collaborating with the Net”

• Netscape was the dominant web browser in the early
90’s

• Business model: free for home and education use,
companies paid to use it

• Microsoft entered browser market with Internet
Explorer, bundled with Windows in 1995, soon
overtakes Netscape in usage (it’s free, with Windows!)

• January 1998: Netscape becomes first (?) company to
make source code for proprietary product open
(Mozilla)

Usage Share of Netscape Navigator

“Open Source”

• Until Netscape/Mozilla, much of open source movement was
concentrated in the free software foundation and its GPL

• “Open Source” coined in 1998 by the Open Source Initiative as
a term to capture Netscape’s aim for an open development
process, Eric Raymond’s “Bazaar”

• Publisher Tim O’Reilly organizes a “Freeware Summit” later in
1998, soon rebranded as “Open Source Summit”

• “Open Source is a development methodology; free software is a
social movement” - Richard Stallman

Tim O’Reilly 
Photo via Christopher Michel/

Flickr, CC BY 2.0

Open source initiative logo

Is Open Source a Good Business Model?

IBM TV Commercial: “Prodigy”

https://www.youtube.com/watch?v=x7ozaFbqg00

https://www.youtube.com/watch?v=x7ozaFbqg00
https://www.youtube.com/watch?v=x7ozaFbqg00

Model: “Open Core,” closed plugins

• Model: core component of a product is an open source
utility; premium plugins available for a fee

• Example: Apache Kafka, a distributed message broker
(glue in an event-based system)

• Product is open source, maintained by Apache
foundation, supported by company “Confluent”

• Confluent provides plugins to connect Kafka to many
different systems out-of-the-box

[Screenshot: “Apache Kafka vs Confluent”]

https://www.confluent.io/apache-kafka-vs-confluent/

Model: Open Source as a Utility

• The largest, most successful open source projects implement
utility infrastructure:

• Operating systems, web servers, logging libraries,
programming languages

• Business model: build and sell products and services using
those utilities, contribute improvements back to the ecosystem

• Many companies provide specialized “distributions” of these
open source infrastructure and specialized tools to improve
them; support the upstream project

The Open Source Browser Wars

• Firefox (based on Mozilla, based on Netscape) is
no longer dominant: Chrome and Safari are

• Chrome’s core: Chromium (open source)

• Safari’s core: Webkit (open source)

• Microsoft’s IE successor, Edge? Based on
Chromium

• How do browsers differentiate themselves, and
why is there still more than one? [By Datavizzer, CC BY-SA 4.0]

https://commons.wikimedia.org/wiki/User:Datavizzer

Where do laws come to play in open source?

• Copyright provides creators with protection for creative, intellectual and artistic works
- including software

• Alternative: public domain (nobody may claim exclusive property rights)

• Trademark protects the name and logo of a product

• Open source software is generally copyrighted, with copyright retained by
contributors or assigned to a foundation/corporation that maintains the product

• Copyright holder can grant a license for use, placing restrictions on how it can be
used (perhaps for a fee)

• Common open source licenses: MIT, BSD, Apache, GPL

Licensing: Copyleft vs permissive

• Can I combine some open source software with my product, releasing my
product under a different license (perhaps not even open source)?

• Permissive licenses encourage adoption by permitting this practice

• Copyleft “protects the commons” by forcing all linked code to be released
under same license (e.g. GPL)

• Philosophy: do we force participation, or try to grow/incentivize it in other
ways?

Model: Dual Licensing

• Offer a free copyleft (e.g. GPL) license to encourage broad
adoption, prevent competitors from improving it without
sharing those improvements.

• Offer custom, more permissive licenses to third parties who
are willing to pay for that (e.g. enterprise)

• Only possible when there is a single copyright owner, who
can unilaterally change license

• Risk of losing control of the copyleft portion: nothing to
stop the community from forking it

• Examples: MySQL, Qt

Model: Hosted Open Source Products As A Service

• Model: Creators of open source software provide a cloud hosted, “fully
managed” installation of the software, as a service

• Risk: What is your competitive advantage over cloud utility providers e.g.
Amazon?

• Amazon could even make improvements to your GPL code and not have to
share them because it is not distributing the program (it operates it as a service)

• Example: MongoDB Atlas (document-oriented database)

• MongoDB created a new license to require copyleft for service providers
operating MongoDB as a service

• Amazon created their own fork of the GPL’ed version of MongoDB

Successful Open Source Projects Have Strong Communities

• Open source projects thrive when the community surrounding them
contributes to push the project forwards

• Communities form around collective ownership (even if it’s only perceived)

• Contributors bring more than code: also documentation, support, and
outreach

• Community/ownership models:

• Corporate owner, community outreach/involvement (MySQL, MongoDB)

• Foundation owner, corporate sponsors (GNU, Linux)

When communities move on: Forks

• When software is released under an open source license, the only rights that the
creator can realistically retain are trademarks on name/images - code can
otherwise be “forked”

• Example:

• Sun bought StarOffice in 1999, GPL open-sourced as OpenOffice in 2000 with
aim of fighting MS Office

• 2010: Oracle buys Sun, fires many internal developers, frustrating external
community

• 2011: Community forms a foundation, creates fork LibreOffice, OpenOffice dies
off (Oracle transfers to Apache)

Java: Open Source to Retain Control

• While the Java specification is public, there was no open source Java runtime

• Much open source software was/is written in Java, creating “The Java Trap”
for open source

• 1996-2006: GNU, Apache (backed by IBM and Apple), and others attempted
to create open source implementations; Sun refused to permit these runtimes
to be tested for compatibility, prohibiting them from using the term “Java”

• 2007: Sun releases OpenJDK under GPL; third party projects abandoned
mostly uncompleted

Android: Build the Ecosystem, not the Operating System

• Model: “Product” is the ecosystem (app store, ads, etc) and the hardware
(made by competing manufacturers), not the operating system

• Android is entirely open source, built on Linux; applications are written in
Java, executed using a custom-built runtime

• To provide implementations of core Java APIs (e.g. java.util.X), Android used
the open source Apache Harmony implementations

• Oracle v Google: Oracle asserted that Java APIs were their property
(copyright) and Google misused that; judge ruled that could not copyright
APIs

Risks Adopting Open Source

• Are licenses compatible? A significant concern for licenses with copyleft:

• Adopting libraries with copyleft clause generally means what you distribute
linked against that library must also have same copyleft clause (and be open
source)

• Including permissive-licensed software in copyleft-licensed software is
generally compatible

• Are you certain that the software truly is released under the license that is
stated? Did all contributors agree to that license?

GitHub Copilot + Codex

• Codex is a large language model trained on all
code in public repositories on GitHub

• Copilot suggests lines of code as you program,
based on the Codex model

• Copilot will output entire snippets of code from
public GitHub repositories

• What is the ownership and license
compatibility of the resulting code?

https://www.theregister.com/2022/11/11/githubs_copilot_opinion/

https://www.theregister.com/2022/11/11/githubs_copilot_opinion/

Review: Learning Objectives for this Lesson
You should now be able to…

• Understand the terminology “free software” and explain open source
culture and principles.

• Express an educated opinion on the philosophical/political debate
between open source and proprietary principles.

• Reason about the tradeoffs of different open source licenses and
business model

